Normal families of meromorphic functions with multiple values
نویسندگان
چکیده
منابع مشابه
Normal families of meromorphic functions sharing values or functions
* Correspondence: jiangyunbo@ss. buaa.edu.cn School of Mathematics and Systems Science and LMIB, Beihang University, Beijing, 100191, People’s Republic of China Abstract In this paper, we investigate the normal families of meromorphic functions concerning shared values and shared analytic functions and prove some normal criteria that generalize or extend some results obtained by Q. C. Zhang, Y....
متن کاملUniqueness of meromorphic functions dealing with multiple values in an angular domain
This paper uses the Tsuji’s characteristic to investigate the uniqueness of transcen- dental meromorphic function with shared values in an angular domain dealing with the multiple values which improve a result of J. Zheng.
متن کاملNormal Criteria for Families of Meromorphic Function concerning Shared Values
Let k be a positive integer and let F be a family of meromorphic functions in the plane domain D all of whose zeros with multiplicity at least k. Let P = apz p + · · ·+a2z +z be a polynomial, ap, a2 6= 0 and p = deg(P ) ≥ k+2. If, for each f, g ∈ F , P (f)G(f) and P (g)G(g) share a non-zero constant b in D, where G(f) = f (k) + H(f) be a differential polynomial of f satisfying w deg |H ≤ k l+1 ...
متن کاملSome Normal Criteria for Families of Meromorphic Functions
In the paper, we study the normality of families of meromorphic functions related a Hayman Conjecture. We consider whether a family meromorphic functions F is normal in D, if for each function f in F , f ′ + af = b has at most one zero, where n is a positive integer, a and b = 0 are two finite complex numbers. Some examples show that the conditions in our results are best possible.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2009
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2009.01.003